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Abstract

In this paper we explicitly construct the entropy solutions for the Lighthill-Whitham-

Richards (LWR) traffic flow model with a flow-density relationship which is piecewise quadratic,

concave, but not continuous at the junction points where two quadratic polynomials meet,

and with piecewise linear initial condition and piecewise constant boundary conditions. The

existence and uniqueness of entropy solutions for such conservation laws with discontinuous

fluxes are not known mathematically. We have used the approach of explicitly construct-

ing the entropy solutions to a sequence of approximate problems in which the flow-density

relationship is continuous but tends to the discontinuous flux when a small parameter in

this sequence tends to zero. The limit of the entropy solutions for this sequence is explicitly

constructed and is considered to be the entropy solution associated with the discontinuous

flux. We apply this entropy solution construction procedure to solve three representative

traffic flow cases, compare them with numerical solutions obtained by a high order weighted

essentially non-oscillatory (WENO) scheme, and discuss the results from traffic flow per-

spectives.
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1 Introduction

Lighthill and Whitham (1955) and Richards (1956) independently proposed a macroscopic

model of traffic flow to describe the dynamic characteristics of traffic on a homogeneous and

unidirectional highway, which is now known as the LWR model in the literature of traffic

flow theory. Although a substantial amount of work has been conducted to improve the

modeling approach of traffic flows in many directions, the LWR model is still widely used

for the modeling of traffic flow, because of its simplicity and good explanatory power to

understand the qualitative behavior of road traffic. The results that are obtained from the

LWR model are generally adequate for many applications such as traffic management and

control problems.

The LWR model is formulated as a scalar hyperbolic conservation law and is often solved

by finite difference methods (Daganzo, 1995; LeVeque, 1992; Lebacque, 1996; Michalopoulos

et al., 1984; Wong and Wong, 2002a; Zhang et al., 2003). The main difficulty in designing

efficient and high order finite difference methods for the LWR model or in general for hy-

perbolic conservation laws is the inherent presence of discontinuities (shocks) in the solution

(Lebacque, 1996). Moreover, discontinuous weak solutions are not unique for hyperbolic con-

servation laws and entropy conditions must be satisfied to obtain physically valid solution

that is consistent with human behavior (such as the driver’s ride impulse) (Ansorge, 1990;

Velan and Florian, 2002). Recently, the analytical solution for specific classes of LWR model

was derived, which assumed that the flow-density relationship is governed by a quadratic

function throughout the density regime (Wong and Wong, 2002b), and then extended to the

case of a piecewise quadratic function (Lu et al., 2006). Their constructed entropy solutions

are exact if the initial condition is piecewise linear and the boundary condition is piecewise

constant. The fundamental diagrams in their works are continuous.

However, when traffic flow data are plotted on the fundamental diagram, the uncongested

and congested regimes may be separated by gaps or discontinuities as shown in Figure 1.

Edie (1961) was among the first to point out that traffic behaved differently at different
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density regimes, and introduced the idea of a two-regime model leading to a discontinuous

fundamental diagram. The discontinuous fundamental diagrams have also been observed

from empirical works (e.g., Ceder, 1976; Ceder and May, 1976; Drake et al., 1967; May and

Keller, 1967). In particular, Koshi et al. (1983) suggested a ”reverse lambda” shape to

describe the characteristics of the data plotted on the discontinuous fundamental diagrams.

Further evidence of the discontinuous fundamental diagram was revealed by a series of papers

by Hall (1987), Hall and Gunter (1986) and Hall et al. (1986). In addition, Bank (1991a,b)

described this discontinuous fundamental diagram as a two-capacity phenomenon, with one

capacity corresponding to the tip of the left leg of the reverse lambda, and the other capacity

belonging to the tip of the right leg of the reverse lambda with a capacity drop from the

former tip. More recently, Cassidy (1998) and Cassidy and Bertini (1999) also confirmed

the capacity drop on highways. When such discontinuous fundamental diagram is embedded

into the LWR model, it is to our best knowledge that there is still no mathematical theory

on the existence and uniqueness of the entropy solutions for the resultant traffic model.

In this paper we assume that the flow-density relationship q(ρ) is concave and is repre-

sented by a piecewise quadratic function, with any two adjacent pieces joining discontinu-

ously at a critical density ρ0. Such discontinuous fundamental diagrams were developed in

Drake et al. (1967) by fitting with observed data. Our procedure to construct the physically

relevant solutions for such conservation laws with discontinuous fluxes is as follows. We first

explicitly construct the entropy solutions to a sequence of approximate problems in which

the flow-density relationship q(ρ) is continuous but tends to the discontinuous flux when a

small parameter in this sequence tends to zero. We then explicitly construct the limit of

the entropy solutions for this sequence and consider this limit solution as the the entropy

solution associated with the discontinuous flux. In order to verify the physical relevancy

of such entropy solutions, we apply our results to a few typical traffic flow examples and

comment on the implication of the solutions.

The organization of the paper is as follows. In Section 2 we obtain the explicit formulas
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Figure 1: A typical flow with two different concave quadratic functions joining discontinu-
ously at a critical density ρ0 with decreasing derivative at ρ0.

for the entropy solutions to Riemann problems with discontinuous flow-density relationship,

in a limit process involving a sequence of approximate problems in which the flow-density

relationship q(ρ) is continuous but tends to the discontinuous flux when a small parameter in

this sequence tends to zero. In Section 3 we obtain the explicit formulas for the entropy solu-

tions with discontinuous flow-density relationship and with piecewise linear initial condition

and piecewise constant boundary conditions. In Section 4 we provide numerical examples

in traffic flows to demonstrate the explicit solutions obtained in Sections 2 and 3. We also

compare these explicit solutions with numerical solutions obtained by using the high order

weighted essentially non-oscillatory (WENO) schemes (Jiang and Shu, 1996; Zhang et al.,

2003). Concluding remarks are given in Section 5.
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2 A sequence of approximate problems with continu-
ous fluxes: Riemann problems

The governing equation for the LWR model is the following scalar hyperbolic conservation

law

ρt + q(ρ)x = 0 (1)

with suitable initial and boundary conditions. Here ρ ∈ (0, ρmax) is the density, ρmax is the

maximum (jam) density, and q(ρ) is the traffic flow on a homogeneous highway, which is

assumed to be a function of the density ρ only in the LWR model. More specifically, the

flow q, the density ρ and the equilibrium speed u are related by

q(ρ) = u(ρ) ρ. (2)

In this paper, the flow q(ρ) is considered to be piecewise quadratic and locally concave in

each piece. Without loss of generality, we will concentrate our discussion on the situation

where the flow q is defined by two different quadratic functions in different regimes

q(ρ) =

{
q1(ρ), 0 ≤ ρ ≤ ρ0

q2(ρ), ρ0 < ρ ≤ ρmax
(3)

where

Flux I: q1(ρ) = d0 + d1 ρ+ d2 ρ
2; Flux II: q2(ρ) = e0 + e1 ρ+ e2 ρ

2 (4)

are two different quadratic functions, which are discontinuous at the junction q1(ρ0) > q2(ρ0),

concave in each piece q′′1(ρ) < 0 and q′′2(ρ) < 0, and concave also at the junction q′1(ρ0) ≥

q′2(ρ0).

A typical flow in this setup is given in Figure 1. The general situation of the flow q with

more than two pieces of quadratic functions can be considered with the same recipe to each

neighboring pairs of quadratic flow functions.

Since it is not known mathematically how to study the existence and uniqueness of

entropy solutions for the scalar conservation law (1) with a discontinuous flux function q(ρ),
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we first consider the following sequence of conservation laws with continuous fluxes

ρt + qε(ρ)x = 0 (5)

where

qε(ρ) =






q1(ρ) = d2ρ2 + d1ρ+ d0, 0 ≤ ρ ≤ ρ0

qε
mid(ρ) = − q1(ρ0)−qε

2(ρ0+ε)
ε (ρ− ρ0) + q1(ρ0), ρ0 < ρ ≤ ρ0 + ε

qε
2(ρ) = e2ρ2 + (e1 − 2εe2)ρ+ e0 + e2ε2 − e1ε, ρ0 + ε < ρ ≤ ρmax

(6)

with a simple Riemann type initial condition

ρ(x, 0) =

{
ρl, x ≤ 0
ρr, x > 0

. (7)

Notice that the narrow ε region connecting the two pieces of the discontinuous fluxes is

located to the right of the discontinuity point ρ0. We could of course also construct the

sequence with the narrow ε region located to the left of the discontinuity point ρ0, or centrally

around ρ0.

We remark here the technical difficulty in dealing with the conservation law (1) with

the flux (6): the flux is continuous for ε > 0, but it is not globally concave. Therefore, we

cannot use our results in (Lu et al., 2006) directly. It is not possible to connect the two

discontinuous pieces of the flux in a continuous and globally concave fashion.

We are interested only in the situations that ρl ≤ ρ0 ≤ ρr or ρl ≥ ρ0 ≥ ρr, with the

equality holding at most once in each situation. Otherwise, the Riemann problem would

involve only one of the two quadratic fluxes in (4) and its solution would be routine.

Even though the flux qε(ρ) is not globally concave, it is continuous for ε > 0. Therefore,

we can construct the solution to the Riemann problem using standard techniques, see, e.g.

(LeVeque, 1992), via convex or concave hulls from the graph of the flux qε(ρ).

2.1 Shock: ρl < ρr

If ρl < ρr, and without loss of generality assume ρl ≤ ρ0 < ρ0 + ε ≤ ρr, then we construct

the convex hull of the set {(ρ, y) : ρl ≤ ρ ≤ ρr and y ≥ qε(ρ)}. Recall that the convex hull

is the smallest convex set containing the original set. An illustration of the convex hull is
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shown in Figures 2 and 3 (the shaded region). We can then obtain the entropy solution of

the Riemann problem with the flux qε(ρ) as follows, where ξ = x/t:

!

q(
!)

!0 !0+"
!l !r

A B

C

Figure 2: The convex hull of {(ρ, y) : ρl ≤ ρ ≤ ρr and y ≥ qε(ρ)} for kAB < kBC .

Let kAB and kBC be the slope of AB and the slope of BC, respectively, where

kAB =
qε
2(ρ0 + ε) − q1(ρl)

ρ0 + ε− ρl
, kBC =

qε
2(ρr) − qε

2(ρ0 + ε)

ρr − (ρ0 + ε)

• If

kAB < kBC , (8)

then the solution is (see Figure 2)

ρ(x, t) =






ρl, ξ ≤ kAB

ρ0 + ε, kAB < ξ < kBC

ρr, ξ ≥ kBC

(9)

• If

kAB ≥ kBC , (10)
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Figure 3: The convex hull of {(ρ, y) : ρl ≤ ρ ≤ ρr and y ≥ qε(ρ)} for kAB ≥ kBC .

then the solution is (see Figure 3)

ρ(x, t) =

{
ρl, ξ ≤ qε

2(ρr)−q1(ρl)
ρr−ρl

ρr, ξ > qε
2(ρr)−q1(ρl)

ρr−ρl

(11)

Therefore, taking the limit ε → 0+, we have the following explicit solutions to the Rie-

mann problem with the discontinuous flux (3) :

• If
q2(ρ0) − q1(ρl)

ρ0 − ρl
<

q2(ρr) − q2(ρ0)

ρr − ρ0
(12)

then

ρ(x, t) =






ρl, ξ ≤ q2(ρ0)−q1(ρl)
ρ0−ρl

ρ0,
q2(ρ0)−q1(ρl)

ρ0−ρl
< ξ < q2(ρr)−q2(ρ0)

ρr−ρ0

ρr, ξ ≥ q2(ρr)−q2(ρ0)
ρr−ρ0

(13)

If
q2(ρ0) − q1(ρl)

ρ0 − ρl
≥ q2(ρr) − q2(ρ0)

ρr − ρ0
(14)
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then

ρ(x, t) =

{
ρl, ξ ≤ q2(ρr)−q1(ρl)

ρr−ρl

ρr, ξ > q2(ρr)−q1(ρl)
ρr−ρl

(15)

2.2 Rarefaction wave: ρl > ρr

If ρl > ρr, and without loss of generality assume ρl ≥ ρ0 + ε > ρ0 ≥ ρr, then we construct

the convex hull of the set {(ρ, y) : ρr ≤ ρ ≤ ρl and y ≤ qε(ρ)}. An illustration of the convex

hull is shown in Figures 4 and 5 (the shaded region).

!

q(
!)

!0 !0+" !l!r

A

B

C

D

!*

Figure 4: The convex hull of {(ρ, y) : ρr ≤ ρ ≤ ρl and y ≤ qε(ρ)} for (qε
2)

′(ρl) < kε
0.

If we look at the upper boundary of the convex hull in Figure 4, we can observe that it

consists of a straight line segment from (ρ0, qε(ρ0)) to (ρ$, qε(ρ$)) (the line BC in the figure),

and the two pieces of the curve y = qε(ρ) for ρr ≤ ρ ≤ ρ0 (AB in the figure) and ρ$ ≤ ρ ≤ ρl

(CD in the figure), where BC is the tangent of qε(ρ).

For the slope of BC, we have the relationship:
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Figure 5: The convex hull of {(ρ, y) : ρr ≤ ρ ≤ ρl and y ≤ qε(ρ)} for (qε
2)

′(ρl) ≥ kε
0.

qε
2(ρ$) − q1(ρ0)

ρ$ − ρ0
= (qε

2)
′(ρ$) = 2e′2ρ$ + e′1 (16)

where e′2 = e2, e′1 = e1−2εe2 and e′0 = e0 +e2ε2−e1ε. Then we can get a quadratic equation

of ρ$. The discriminant of this quadratic equation

∆ = 4e′2[e
′
2ρ

2
0 + e′1ρ0 + e′0 − (d2ρ

2
0 + d1ρ0 + d0)] > 0 (17)

because e′2 < 0 and e′2ρ
2
0 + e′1ρ0 + e′0 < d2ρ2

0 + d1ρ0 + d0 when ε is small enough. The smaller

root of (16) is just what we want.

Let kε
0 = (qε

2)
′(ρ$) = 2e′2ρ$ + e′1. Apparently, kε

0 < (qε
2)

′(ρ0) = e′1 + 2e′2ρ0. We can then

obtain the entropy solution of the Riemann problem with the flux qε(ρ) as follows, where

ξ = x/t:
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• If

(qε
2)

′(ρl) < kε
0 (18)

as shown in Figure 4, then the solution is

ρε(x, t) =






ρl, ξ ≤ (qε
2)

′(ρl)
ξ−e′1
2e′2

, (qε
2)

′(ρl) < ξ ≤ kε
0

ρ0, kε
0 < ξ ≤ q′1(ρ0)

ξ−d1

2d2
, q′1(ρ0) < ξ < q′1(ρr)

ρr, ξ ≥ q′1(ρr)

(19)

• If

(qε
2)

′(ρl) ≥ kε
0 (20)

as shown in Figure 5, then the solution is

ρε(x, t) =






ρl, ξ ≤ qε
2(ρl)−q1(ρ0)

ρl−ρ0

ρ0,
qε
2(ρl)−q1(ρ0)

ρl−ρ0
< ξ ≤ q′1(ρ0)

ξ−d1

2d2
, q′1(ρ0) < ξ < q′1(ρr)

ρr, ξ ≥ q′1(ρr)

(21)

Therefore, taking the limit ε → 0+, we have the following explicit solutions to the Rie-

mann problem with the discontinuous flux (3), where k0 is the value of kε
0 with ε = 0:

• If

q′2(ρl) < k0 (22)

then

ρ(x, t) =






ρl, ξ ≤ q′2(ρl)
ξ−e1

2e2
, q′2(ρl) < ξ ≤ k0

ρ0, k0 < ξ ≤ q′1(ρ0)
ξ−d1

2d2
, q′1(ρ0) < ξ < q′1(ρr)

ρr, ξ ≥ q′1(ρr)

(23)

If

q′2(ρl) ≥ k0 (24)

then

ρ(x, t) =






ρl, ξ ≤ q2(ρl)−q1(ρ0)
ρl−ρ0

ρ0,
q2(ρl)−q1(ρ0)

ρl−ρ0
< ξ ≤ q′1(ρ0)

ξ−d1

2d2
, q′1(ρ0) < ξ < q′1(ρr)

ρr, ξ ≥ q′1(ρr)

(25)
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3 Explicit construction of the entropy solutions

We now start the construction of explicit solutions to the conservation law (1) with such

flows q(ρ), when the initial condition is piecewise linear. We will first ignore the boundary

conditions, and will leave the discussion of the treatment of piecewise constant boundary

conditions to Sections 3.3 and 3.4. We begin with the generalized Riemann problem

ρ(x, 0) =

{
α1 + β1 x, x < 0
α2 + β2 x, x ≥ 0

. (26)

We also assume that, for the x range we are considering, the initial density αi + βi x is

completely contained in one of the regimes ρ ≤ ρ0 or ρ ≥ ρ0 for i = 1 and 2. This does

not lose generality, as we can break a single linear function into two pieces as in (26) when

it crosses the critical density ρ0. We also remark that we do not need to consider the case

when both linear functions αi + βi x, for i = 1, 2, are contained in a single regime ρ ≤ ρ0 or

ρ ≥ ρ0, because this is covered by the results in (Wong and Wong, 2002b).

As in (Wong and Wong, 2002b and Lu et al., 2006), we will use heavily the following

simple fact: for the scalar conservation law (1) with a quadratic flux q(ρ) = a + b ρ + c ρ2

and a linear initial condition ρ(x, 0) = α + β x, the solution stays linear

ρ(x, t) = α(t) + β(t) x (27)

with

α(t) =
α− bβt

1 + 2cβt
, β(t) =

β

1 + 2cβt
. (28)

This simple fact is the main reason that enables us to obtain explicit formulas for the entropy

solution. The solution for each linear piece of the initial condition is given by (27)-(28) until

neighboring waves interact with each other.

We now assume that the x-axis is divided into a number of elements, within each of which

the initial density is given by a linear function ρ(x, 0) = α+β x that is completely contained

in one of the regimes ρ ≤ ρ0 or ρ ≥ ρ0. We consider the solution to the generalized Riemann

problem with the two piecewise linear initial conditions. The left and right elements to the
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inner boundary point under consideration are denoted by

e = (xl, xr), e = (xl, xr)

respectively, with clearly xr = xl. The initial condition density values at the relevant element

boundaries are denoted by

ρl = ρ(x+
l , 0), ρr = ρ(x−

r , 0); ρl = ρ(x+
l , 0), ρr = ρ(x−

r , 0)

We also denote the densities in the left and right elements by ρ1(x, t) and ρ2(x, t), respectively,

where

ρ1(x, t) = α1(t) + β1(t)x, ρ2(x, t) = α2(t) + β2(t)x.

We discuss the situation for rarefaction waves in Section 3.1 and the situation for shocks

in Section 3.2. In Sections 3.3 and 3.4 we discuss the piecewise constant left and right

boundary conditions, respectively. At last we provide the solution procedure in Section 3.5.

3.1 Case I: ρr ≥ ρ0 ≥ ρl

The elements e and e belong to Flux II and Flux I in (4), respectively. Denote

k0 = e1 + 2e2ρ0 + 2e2

√
q2(ρ0) − q1(ρ0)

e2
(29)

We have the following two sub-cases.

3.1.1 Sub-case I (a): q′2(ρr) ≤ k0

In this sub-case three new elements e1, e2 and e3 are created at the time t = ∆t, as shown

in Figure 6. We again consider only the time ∆t smaller than the smallest time when the

waves (characteristic lines or shocks) from the initial condition intersect with one another.

The coordinates of the four nodes serving as the end points of the three elements e1, e2 and

e3 at time ∆t can be determined as

x1(∆t) = xr + q′2(ρr)∆t, x2(∆t) = xr + k0∆t

13



x3(∆t) = xr + q′1(ρ0)∆t, x4(∆t) = xr + q′1(ρl)∆t

The density at these end points at time ∆t are given by

ρ(x1(∆t),∆t) = ρr, ρ(x2(∆t)−,∆t) =
k0 − e1

2e2
, ρ(x2(∆t)+,∆t) = ρ0,

ρ(x3(∆t),∆t) = ρ0, ρ(x4(∆t),∆t) = ρl

and the density is linear within each of the new elements ei, i = 1, 2, 3. In particular, the

density within e2 is a constant ρ = ρ0.

e _
e

#t

xl
(!l )

xr

(!r )
_
( !l )

_
xl

_
xr_
( !r )

e1 e2 e3

x1 x2 x3 x4

Discontinuity

Figure 6: Sub-case I (a): q′2(ρr) ≤ k0.
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3.1.2 Sub-case I (b): q′2(ρr) > k0

In this sub-case, the situation is shown in Figure 7. The discontinuity which is generated

from the point xr = xl will move to the right or left along a curve. If the discontinuity moves

to the left, an easy way to determine the location of the discontinuity xl +∆x after time ∆t

is through conservation in the rectangular region Ω with (xl +∆x, 0) and (xl + q′1(ρl)∆t,∆t)

as the end points of a diagonal (see Figure 7).

e
_
e

∆t

∆x

fl fr

xl

(ρl )

xr

(ρr )
_

( ρl )

_
xl

_
xr
_

( ρr )

fb

ft

q’ 1(ρ0) q’ 1(ρl)

Discontinuity

^

^
^

^

∑Ωt

∑Ωr
∑Ωl

∑Ωb

x1
x2 x3

W

Figure 7: Sub-case I (b): q′2(ρr) > k0.

The flux at the left boundary ∂Ωl, namely the number of vehicles coming from the left

15



boundary into the region Ω during time period ∆t is

f̂l =

∫ ∆t

0

q2|x=xr+∆x dt =

∫ ∆t

0

{e0+e1[α1(t)+β1(t)(xr +∆x)]+e2[α1(t)+β1(t) (xr +∆x)]2} dt

(30)

Likewise, the flux at the right boundary ∂Ωr, namely the number of vehicles leaving the

right boundary from the region Ω is

f̂r =

∫ ∆t

0

q1|x=xl+q′1(ρl)∆t dt (31)

=

∫ ∆t

0

{d0 + d1[α2(t) + β2(t)(xl + q′1(ρl)∆t)] + d2[α2(t) + β2(t)(xl + q′1(ρl)∆t)]2} dt.

The initial number of vehicles within the region Ω at time t = 0 is

f̂b =

∫ xr

xr+∆x

(α1(0) + β1(0)x) dx +

∫ xl+q′1(ρl)∆t

xl

(α2(0) + β2(0)x) dx (32)

and the final number of vehicles within the region Ω at time t=∆t is

f̂t =

∫ xl+q′1(ρ0)∆t

xr+∆x

ρ0 dx +

∫ xl+q′1(ρl)∆t

xl+q′1(ρ0)∆t

(α2(∆t) + β2(∆t)x) dx. (33)

From the flow conservation principle, we deduce that

f̂l − f̂r + f̂b − f̂t = 0. (34)

We then obtain from (34) the explicit equation determining ∆x as

F1(∆t)∆x2 + F2(∆t)∆x + F3(∆t) = 0 (35)

where

F1(∆t) = ρl − ρr

F2(∆t) = −2[e1(ρl − ρr)∆t + 2e2ρ0(ρl − ρr)∆t + (ρ0 − ρr)(xl − xr)]

F3(∆t) = ∆t{e2
1(ρl − ρr)∆t + 2e1ρr(xr − xl) + 2{−2e0e2ρl∆t + 2d1e2ρ0ρl∆t

+2d2e2ρ
2
0ρl∆t + 2e0e2ρr∆t − 2d1e2ρ0ρr∆t − 2d2e2ρ

2
0ρr∆t − e0xl + d1ρ0xl

+d2ρ
2
0xl − e2ρ

2
rxl + d0[2e2(ρl − ρr)∆t + xl − xr] + [e0 − ρ0(d1 + d2ρ0) + e2ρ

2
r ]xr}}
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The discontinuity trajectory can therefore be determined by solving the quadratic equation

(35). Then when F1(∆t) &= 0,

∆x =
−F2(∆t) −

√
∆

2F1(∆t)
(36)

where ∆ = F2(∆t)2 − 4F1(∆t)F3(∆t). If the root ∆x is positive, then the assumption of

a left-moving discontinuity is incorrect. We can then repeat the procedure above assuming

that the discontinuity is right-moving. It turns out that the formula for the location ∆x of

the discontinuity is still given by (36). Therefore, we do not need to distinguish whether the

discontinuity moves to the left or right. The coordinates of the three nodes serving as the

end points of the three elements e1 and e2 at time ∆t can be determined as

x1(∆t) = xr +∆x(∆t), x2(∆t) = xr + q′1(ρ0)∆t, x3(∆t) = xr + q′1(ρl)∆t.

The density at these end points at time ∆t are given by

ρ(x1(∆t)+,∆t) = ρ0, ρ(x2(∆t),∆t) = ρ0, ρ(x3(∆t),∆t) = ρl

and the density is linear within each of the new elements ei, i = 1, 2. In particular, the

density within e1 is a constant ρ = ρ0.

3.2 Case II: ρr ≤ ρ0 ≤ ρl

In this case the elements e and e belonging to Flux I and Flux II in (4), respectively. We

have the following two sub-cases.

3.2.1 Sub-case II (a): ρr < ρ0

(i) If
q1(ρr) − q2(ρ0)

ρr − ρ0
≥ q2(ρl) − q2(ρ0)

ρl − ρ0

then a shock satisfying the Lax entropy condition (Lax, 1973) is generated from the point

xr = xl and will move to the right or left along a curve determined by the Rankine-Hugoniot

jump condition. If the shock moves to the right, as shown in Figure 8, an easy way to

determine the location of the shock xl + ∆x after time ∆t is through conservation in the
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rectangular region Ω with (xl, 0) and (xl+∆x,∆t) as the end points of a diagonal (see Figure

8). Notice that, since we consider only the time ∆t smaller than the smallest time when the

waves (characteristic lines or shocks) from the initial condition intersect with one another,

we can safely assume that the left and top boundaries of this rectangle, ∂Ωl and ∂Ωt, belong

to Flux I, and the right and bottom boundaries of this rectangle, ∂Ωr and ∂Ωb, belong to

Flux II.

e
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∆t

∆x

^ f r

xl

(ρl )
xr

(ρr )
_

( ρl )

_
xl

_
xr
_

( ρr )f b

Ω

Ω l

f l
^
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^f t

Ω r

Ω b

Ω t
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∑

∑
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∑

Figure 8: Sub-case II (a) (i): ρr < ρ0 and q1(ρr)−q2(ρ0)
ρr−ρ0

≥ q2(ρl)−q2(ρ0)
ρl−ρ0

.

The flux at the left boundary ∂Ωl, namely the number of vehicles coming from the left

boundary into the region Ω during time period ∆t is

f̂l =

∫ ∆t

0

q1|x=xr dt =

∫ ∆t

0

[
d0 + d1(α1(t) + β1(t) xr) + d2(α1(t) + β1(t) xr)

2
]

dt (37)
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Likewise, the flux at the right boundary ∂Ωr, namely the number of vehicles leaving the

right boundary from the region Ω is

f̂r =

∫ ∆t

0

q2|x=xl+∆x dt

=

∫ ∆t

0

[
e0 + e1(α2(t) + β2(t)(xl +∆x)) + e2(α2(t) + β2(t)(xl +∆x))2

]
dt. (38)

The initial number of vehicles within the region Ω at time t = 0 is

f̂b =

∫ xl+∆x

xl

(α2(0) + β2(0)x) dx (39)

and the final number of vehicles within the region Ω at time t = ∆t is

f̂t =

∫ xr+∆x

xr

(α1(∆t) + β1(∆t)x) dx. (40)

From the flow conservation principle, we deduce that

f̂l − f̂r + f̂b − f̂t = 0. (41)

We obtain the explicit equation determining ∆x by

F1(∆t)∆x2 + F2(∆t)∆x + F3(∆t) = 0 (42)

where

F1(∆t) = 2∆t(d2 − e2)(ρr − ρl)(ρr − ρl) + (xr − xl)(ρr − ρl) − (xr − xl)(ρr − ρl)

F2(∆t) = 2{−(xl − xr)[∆t(e1 + 2e2ρr)(ρl − ρr) − (ρl − ρr)(xl − xr)] + d1∆t(ρl − ρr)[2e2∆t(ρl − ρr)

+xl − xr] − 2d2∆t(ρl − ρr)[∆te1(ρl − ρr) − ρl(xl − xr)]}

F3(∆t) = ∆t{(xl − xr){∆t[e2
1 + 4(d0 − e0)e2](ρl − ρr) + 2(d0 − e0 − e1ρl − e2ρ

2
l )(xl − xr)}

+2d2{∆t2[e2
1 + 4(d0 − e0)e2](ρl − ρr)(ρl − ρr) + 2∆t{e2[ρlρ

2
r(xl − xr) + ρ2

rρr(xr − xl)

−ρ2
l (ρl − ρr)(xl − xr)] + (d0 − e0 − e1ρl)(ρl − ρr)(xl − xr)} + ρ2

r(xl − xr)(xl − xr)}

−d2
1∆t(ρl − ρr)[2∆te2(ρl − ρr) + xl − xr] + 2d1ρr(xl − xr)(2∆te2(ρl − ρr) + xl − xr)}
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The shock trajectory can therefore be determined by solving the quadratic equation (42). If

F1(∆t) &= 0, then

∆x =
−F2(∆t) +

√
∆

2F1(∆t)
(43)

where ∆ = F2(∆t)2 − 4F1(∆t)F3(∆t). If the root ∆x is negative, then the assumption of

a right-moving shock is incorrect. However, as before, it turns out that the formula (43) is

still valid in this case.

(ii) If, on the other hand,

q1(ρr) − q2(ρ0)

ρr − ρ0
<

q2(ρl) − q2(ρ0)

ρl − ρ0

then two shocks satisfying the Lax entropy condition are generated from the point xr = xl

and one new element e1 is created at the time t = ∆t, as shown in Figure 9. We again

consider only the time ∆t smaller than the smallest time when the waves (characteristic

lines or shocks) from the initial condition intersect with one another.

By the Rankine-Hugoniot jump condition

∆x′
2(∆t) =

q2(α2(∆t) + β2(∆t)(xl +∆x2(∆t))) − q2(ρ0)

α2(∆t) + β2(∆t)(xl +∆x2(∆t)) − ρ0
(44)

If ρl &= ρr, then

∆x2(∆t) = [e1(ρl − ρr)∆t
√

xr − xl + 2e2ρ0(ρl − ρr)∆t
√

xr − xl (45)

+(
√

xr − xl −
√

2e2(ρr − ρl)∆t + xr − xl)(ρ0xl − ρrxl − ρ0xr + ρlxr)]/[(ρl − ρr)
√

xr − xl]

If ρl = ρr, then

∆x2(∆t) = [e1 + e2(ρl + ρ0)]∆t (46)

The flux at the left boundary ∂Ωl, namely the number of vehicles coming from the left

boundary into the region Ω during time period ∆t is

f̃l =

∫ ∆t

0

q1|x=xr dt =

∫ ∆t

0

[
d0 + d1(α1(t) + β1(t) xr) + d2(α1(t) + β1(t) xr)

2
]

dt (47)
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Figure 9: Sub-case II (a) (ii): ρr < ρ0 and q1(ρr)−q2(ρ0)
ρr−ρ0

< q2(ρl)−q2(ρ0)
ρl−ρ0

.

The flux at the right boundary ∂Ωr , namely the number of vehicles leaving the right boundary

from the region Ω is

f̃r =

∫ ∆t

0

q2|x=xl+∆x2 dt

=

∫ ∆t

0

[
e0 + e1(α2(t) + β2(t)(xl +∆x2)) + e2(α2(t) + β2(t)(xl +∆x2))

2
]

dt. (48)

The initial number of vehicles within the region Ω at time t = 0 is

f̃b =

∫ xl+∆x2

xl

(α2(0) + β2(0)x) dx (49)
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and the final number of vehicles within the region Ω at time

f̃t =

∫ xr+∆x1

xr

(α1(∆t) + β1(∆t)x) dx +

∫ xr+∆x2

xr+∆x1

(ρ0) dx (50)

From the flow conservation principle, we deduce that

f̃l − f̃r + f̃b − f̃t = 0. (51)

From this, we obtain the explicit equation determining ∆x1 as

F̃1(∆t)∆x1
2 + F̃2(∆t)∆x1 + F̃3(∆t) = 0 (52)

where

F̃1(∆t) = (ρr − ρl)[2e2(ρl − ρr)∆t + xl − xr]

F̃2(∆t) = 2[d1(ρl − ρr)∆t + 2d2ρ0(ρl − ρr)∆t + (ρ0 − ρr)(xl − xr)][2e2(ρl − ρr)∆t + xl − xr]

F̃3(∆t) = 2d1ρr∆t(xl − xr)[2e2(ρl − ρr)∆t + xl − xr] + d2
1(ρl − ρr)∆t2[2e2(ρr − ρl)∆t + xr − xl] +

(xl − xr){∆t{e2
1(ρl − ρr)∆t + 2e1ρl(xr − xl) + 2{d0[2e2(ρl − ρr)∆t + xl − xr]

+e2ρ
2
l (xr − xl) + e0[2e2(ρr − ρl)∆t + xr − xl]}}− 2[e1(ρl − ρr)∆t + 2e2ρ0(ρl − ρr)∆t

+(ρ0 − ρl)(xl − xr)]∆x2(∆t) + (ρl − ρr)∆x2(∆t)2}

+2d2∆t{[e2
1 + 4(d0 − e0)e2](ρl − ρr)(ρl − ρr)∆t2 + 2{e2[ρlρ

2
r(xl − xr) + ρ2

rρ
2
r(xr − xl)

−ρ2
l (ρl − ρr)(xl − xr)] + (d0 − e0)(ρl − ρr)(xl − xr)}∆t + ρ2

r(xl − xr)(xl − xr)

+2(ρl − ρr)[2e2ρ0(ρr − ρl)∆t − (ρ0 − ρl)(xl − xr)]∆x2(∆t)

+(ρl − ρr)(ρl − ρr)∆x2(∆t)2 − 2e1(ρl − ρr)∆t[−ρr∆x2(∆t) + ρl(xl − xr +∆x2(∆t))]}

Therefore, when F̃1(∆t) &= 0,

∆x1 =
−F̃2(∆t) +

√
∆

2F̃1(∆t)
(53)

with ∆ = F̃2(∆t)2 − 4F̃1(∆t)F̃3(∆t).

It is easy to find that the density within e1 is a constant ρ = ρ0.

We can verify again that the formulas for the location ∆x1 and ∆x2 of the two shocks

stay the same regardless of whether the two shocks move to the left or right.
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3.2.2 Sub-case II (b): ρr = ρ0

In this sub-case, if ρl = ρr, then one shock satisfying the Lax entropy condition is generated

from the point xr = xl, as shown in Figure 8. The formula for the location ∆x of the shock

is the same as that given in (43).

If ρl &= ρr, then two shocks satisfying the Lax entropy condition are generated from the

point xr = xl, as shown in Figure 9. The formulas for the locations ∆x1 and ∆x2 of the two

shocks are given by (53) and (45).

3.3 Boundary conditions from the highway entrance

We now consider the boundary condition at the left boundary x = 0, which is the highway

entrance. Looking at the solution (27)-(28), we can see that the general solution with a

linear initial condition is not linear in t for fixed x, unless β = 0, in which case the solution

is constant in t. Therefore, within our piecewise linear (in space) framework, we can only

consider piecewise constant boundary conditions.

We use the same notation as used previously. The interface is at xr = xl = 0, and the left

density value ρr at x = 0 is given by the boundary condition. Otherwise, this is identical to

the situation studied in the two previous cases for an internal generalized Riemann problem.

Again, we would need to consider the situation where ρr and the linear function in the first

element with end values ρl and ρr belong to different regimes in (4), for otherwise the solution

is the one obtained in (Wong and Wong, 2002b).

3.3.1 Sub-case B (a): ρr ≤ ρ0 ≤ ρl

If ρr ≤ ρ0 ≤ ρl, one or two shocks are generated. We consider only the situation that the

shock moves to the right.

(i) ρr < ρ0

If
q1(ρr) − q2(ρ0)

ρr − ρ0
≥ q2(ρl) − q2(ρ0)

ρl − ρ0
,
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a shock is generated and its location ∆x after time ∆t is given by (42), except that the left

flux f̂l given by (37) is simplified to

f̂l = q1(ρr)∆t

and the top flux f̂t given by (40) is simplified to

f̂t = ρr∆x.

Therefore, the coefficients in the quadratic equation (43) which determines the shock location

∆x are simplified to

F1(∆t) = ρr − ρl

F2(∆t) = 2[e1(ρl − ρr)∆t + 2e2ρr(ρl − ρr)∆t + (ρr − ρl)(xl − xr)] (54)

F3(∆t) = −∆t{[e2
1 + 4(d0 − e0)e2](ρl − ρr)∆t + 2(d0 − e0 − e1ρl − e2ρ

2
l )(xl − xr)

+2d1ρr[2e2(ρl − ρr)∆t + xl − xr] + 2d2ρ
2
r[2e2(ρl − ρr)∆t + xl − xr]}.

On the other hand, if

q1(ρr) − q2(ρ0)

ρr − ρ0
<

q2(ρl) − q2(ρ0)

ρl − ρ0
,

two shocks are generated and their locations ∆x1 and ∆x2 after time ∆t are given by (53)

and (45), except that the left flux f̃l given by (47) is simplified to

f̃l = q1(ρr)∆t

and the top flux f̃t given by (50) is simplified to

f̃t = ρr∆x1 + ρ0 (∆x2 −∆x1).

Therefore, the coefficients in the quadratic equation (52) which determines the shock location
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∆x1 are simplified to

F̃1(∆t) = 0

F̃2(∆t) = 2(ρr − ρ0)[2e2(ρl − ρr)∆t + xl − xr]

F̃3(∆t) = −∆t{2ρr(d1 + d2ρr)[2e2(ρl − ρr)∆t + xl − xr] + e2
1(ρl − ρr)∆t

+2e1ρl(xr − xl) + 2{d0[2e2(ρl − ρr)∆t + xl − xr] + e2ρ
2
l (xr − xl) +

e0[2e2(ρr − ρl)∆t − xl + xr]}} + 2[e1(ρl − ρr)∆t + 2e2ρ0(ρl − ρr)∆t

+(ρ0 − ρl)(xl − xr)]∆x2 + (ρr − ρl)∆x2
2

(ii) ρr = ρ0

In this case a shock is generated and the coefficients in the quadratic equation (43) which

determines the shock location ∆x are the same as those in (54).

3.3.2 Sub-case B (b): ρr ≥ ρ0 ≥ ρl

If ρr ≥ ρ0 ≥ ρl, a rarefaction wave is formed. We still use the notation introduced previously.

The interface is at xr = xl = 0, and the left density value ρr at x = 0 is given by the boundary

condition. Otherwise, this is identical to the situation studied in the two previous subsections

for an internal generalized Riemann problem. Again, we would need to consider the situation

where ρr and the linear function in the first element with end values ρl and ρr belong to

different regimes in (4), for otherwise the solution is the one obtained in (Wong and Wong,

2002b).

(i) q′2(ρr) ≤ k0. The formulas are the same as those given in Section 3.1.

(ii) q′2(ρr) > k0. In this case a discontinuity is generated and its location ∆x after time

∆t is given by (35), except that the left flux f̂l given by (30) is changed to

f̂l = q2(ρr)∆t,
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the top flux f̂t given by (33) is changed to

f̂t = ρr∆x + ρ0(q
′
1(ρ0)∆t −∆x) +

∫ xr+q′1(ρl)∆t

xr+q′1(ρ0)∆t

(α2(∆t) + β2(∆t)x) dx,

and the bottom flux f̂b given by (32) is changed to

f̂b =

∫ xr+q′1(ρl)∆t

xr

(α2(∆t) + β2(∆t)x) dx.

Therefore, the coefficients in the quadratic equation (35) which determines the shock

location ∆x are changed to

F1(∆t) = 0

F2(∆t) = 2(ρ0 − ρr)

F3(∆t) = −2[d0 − e0ρ0(d1 + d2ρ0) − ρr(e1 + e2ρr)]∆t.

3.4 Boundary conditions for the highway exit

In this subsection we discuss the boundary condition at the right boundary x = xend, which

is the highway exit.

We consider a typical exit setup with a traffic signal, which alternates between green and

red lights. This is similar to the piecewise constant boundary condition considered for the

entrance in the previous subsection. The constant values of the density ρ for the green and

red lights are ρl = 0 and ρl = ρmax, respectively.

When ρl = ρmax, corresponding to the situation of a red light, a left-moving shock is

formed. We again only consider the situation ρr ≤ ρ0 ≤ ρl, corresponding to the situation

where the density at the left of xend belongs to the regime of Flux I in (4).

The value ∆x determining the shock location xend +∆x after time ∆t (recall that in this

case ∆x is negative) is given by (43), except that the right flux f̂r given by (38) is changed

to

f̂r = 0,
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the top flux f̂t given by (40) is changed to

f̂t = ρmax∆x,

and the bottom flux f̂b given by (39) is changed to

f̂b =

∫ xr+∆x

xr

(α1(0) + β1(0)x) dx.

Therefore, the coefficients in the quadratic equation (42) which determines the shock

location xend +∆x are simplified to

F1(∆t) = ρl − ρr

F2(∆t) = −2[d1(ρl − ρr)∆t + 2d2ρl(ρl − ρr)∆t + (ρl − ρr)(xl − xr)]

F3(∆t) = ∆t{d2
1(ρl − ρr)∆t + 2d1ρr(−xl + xr) − 2{−[e0 + ρl(e1 + e2ρl)](xl − xr)

+d0[2d2(ρl − ρr)∆t + xl − xr] + d2[−2e2ρlρ
2
l∆t + 2e2ρ

2
l ρr∆t + 2e0(ρr − ρl)∆t

+2e1ρl(ρr − ρl)∆t + ρ2
rxl − ρ2

rxr]}}

When ρl = 0, corresponding to the situation of a green light, a rarefaction wave is formed.

The formulas are the same as those given in Section 3.1.1.

We can also easily generalize the method to the case of general piecewise constant initial

condition at the exit, just as for the entrance.

3.5 Solution procedure

In this section we summarize the solution procedure, concentrating on the discussion of

finding the earliest time when the waves (characteristic lines or shocks or discontinuities)

from the previous initial condition intersect with one another and hence the construction of

the entropy solution must be restarted based on a new piecewise linear initial data.

Recall our assumption that the x-axis is divided into a number of elements, within each

of which the initial density is given by a linear function ρ(x, 0) = α+ β x that is completely

contained in one of the regimes ρ ≤ ρ0 or ρ ≥ ρ0. We consider several cases of wave
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interactions separately below, and then take the smallest time from these cases, which will

serve as the time to restart the solution procedure with a new piecewise linear initial data.

Once the smallest time of wave interactions is found, the density function is obtained at

this time using the previous formulas as a new piecewise linear function, and the procedure

is repeated, until the final desired time is reached.

For an element e in which the initial linear density profile is an increasing function, the

natural break time, can be determined by the following formula (Whitham, 1974):

τe = − 1

q′′(ρ) ∂ρ
∂x

Notice that under our assumption (concave quadratic flux q and increasing linear density

ρ) the denomination is a negative constant, hence τe is a positive constant. Indeed, if the

element e = (xl, xr) and the initial condition density values at the element boundaries are

ρl = ρ(x+
l , 0) and ρr = ρ(x−

r , 0), and assuming that the flux function in the element e is:

q(ρ) = a0 + a1 ρ+ a2 ρ
2

then

τe =

{ xr−xl
2a2(ρl−ρr) ρr > ρl

∞ otherwise
(55)

We now consider the situation that two adjacent nodes xm and xm+1 correspond to a pair

of adjacent characteristics and/or discontinuities which will intersect at time ∆t. This is the

most difficult case since no closed form formula exists for the intersecting time ∆t. We will

therefore resort to a nonlinear equation solver such as the Newton’s method.

We denote Gm(∆t) = ∆xm. Likewise, the location of the trajectory from the node xm+1

at time ∆t is xm+1 +∆xm+1 and we denote Gm+1(∆t) = ∆xm+1. The displacements Gm(∆t)

and Gm+1(∆t) are determined by (43) or (53) or (46). Therefore, we can define the function

S(∆t) = xm+1 − xm + Gm+1(∆t) − Gm(∆t) (56)

which measures the distance between the two shocks. Clearly, S(0) = xm+1 − xm > 0, and

we would like to find the root of S(∆t), which corresponds to the time that the two shocks
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intersect. As for each fixed∆t, S(∆t) and S ′(∆t) can both be readily computed, we can easily

set up a Newton iteration to solve for the root of S(∆t) with ∆t = 0 as the initial guess. We

can follow the discussion in the appendix of Lu et al. (2006) to discuss the uniqueness of the

solution to equation (56) before the natural break time, thereby facilitating the convergence

of the Newton iteration process.

4 Numerical examples

In this section we provide three numerical examples to illustrate the explicit formulas for the

entropy solutions obtained in the previous sections. The flow-density relationship is given

by:

q(ρ) =

{
q1(ρ) = −0.4ρ2 + 100ρ, 0 ≤ ρ ≤ 50
q2(ρ) = −0.02ρ2 − 4ρ+ 3850, 50 < ρ ≤ 350.

see Figure 1. The units of flow and density are expressed in veh/h and veh/km, respectively.

The discontinuity in the fundamental diagram occurs at ρ = 50 veh/km, and the flows on

the immediate left and right of this continuity are q = 4000 veh/h and q = 3600 veh/h,

respectively, with a capacity drop of 400 veh/h.

We also use the fifth order finite difference WENO scheme (Jiang and Shu, 1996; Lu et

al., 2006; Zhang et al., 2003) to compute the solution and make a comparison. The purpose

of this comparison is two fold: first to validate the computation of WENO schemes against

the presumably exact entropy solutions obtained by the procedure in this paper; and second

to demonstrate that high resolution numerical schemes such as the WENO schemes with

adequate numerical viscosities do converge to the same entropy solutions that we obtain an-

alytically in this paper for discontinuous fluxes. We remark that the choice of the viscosity

coefficient in the Lax-Friedrichs building block of the WENO scheme must be chosen pro-

portionally to 1
∆x when the initial condition crosses the discontinuity of the flux ρ = ρ0 = 50,

which is consistent with the analytical procedure adopted in this paper to derive entropy

solutions, namely to use a sequence of approximate solutions with continuous fluxes with pro-

gressively sharper gradients and to take its limit to define the entropy solution corresponding
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to the discontinuous flux.

The first and second numerical examples are generalized Riemann problems with the

following initial and boundary conditions

ρ(x, 0) =

{
α1 + β1x, 0 ≤ x < 10
α2 + β2x, 10 ≤ x ≤ 20

, ρ(0, t) = ρ(0, 0).

4.1 Example 1 (Shocks)

Example 1(a-1): α1 = 20, β1 = 0,α2 = 200, β2 = 0

We have
q2(50) − q1(20)

50 − 20
>

q2(200) − q2(50)

200 − 50
.

Example 1(a-2): α1 = 15, β1 = 0.5,α2 = 200, β2 = 1

We have
q2(50) − q1(20)

50 − 20
>

q2(210) − q2(50)

210 − 50
.

The solutions are shown in Figure 10.
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Figure 10: The exact entropy solution obtained by the procedure in Section 3 (solid line)
and the numerical solution obtained by using WENO scheme with N = 1000 uniform grid
points (circles) at the time t=30 min for Example 1 (a-1) and (a-2), respectively.

Example 1 (b-1): α1 = 45, β1 = 0,α2 = 80, β2 = 0
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We have
q2(50) − q1(45)

50 − 45
<

q2(80) − q2(50)

80 − 50
.

Example 1 (b-2): α1 = 50, β1 = −0.5,α2 = 80, β2 = −1

We have
q2(50) − q1(45)

50 − 45
<

q2(70) − q2(50)

70 − 50
.

The solutions are shown in Figure 11.
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Figure 11: The exact entropy solution obtained by the procedure in Section 3 (solid line)
and the numerical solution obtained by using WENO scheme with N = 1000 uniform grid
points (circles) at the time t=12 min for Example 1 (b-1) and (b-2), respectively.

The exact solution of these problems can be worked out using the procedure in this

paper, shown as solid lines in Figures 10 and 11, in comparison with the numerical solution

obtained by the WENO scheme using N = 1000 uniform grid points, shown as circles. In

both cases, we can see that the two results agree very well.

4.2 Example 2 (Rarefaction waves)

In this case k0 = −11.6569 in (22)-(25).

Example 2 (a-1): α1 = 300, β1 = 0,α2 = 20, β2 = 0

31



q′2(300) < k0 and the solution is shown in Figure 12.

Example 2 (a-2): α1 = 300, β1 = 1,α2 = 30, β2 = −1

q′2(310) < k0 and the solution is also shown in Figure 12.
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Figure 12: The exact entropy solution obtained by the procedure in Section 3 (solid line)
and the numerical solution obtained by using WENO scheme with N = 1000 uniform grid
points (circles) at the time t=6 min for Example 2 (a-1) and (a-2), respectively.

Example 2 (b-1): α1 = 80, β1 = 0,α2 = 20, β2 = 0

q′2(80) > k0 and the solution is shown in Figure 13.

Example 2 (b-2): α1 = 80, β1 = −1,α2 = 30, β2 = −1

q′2(70) > k0 and the solution is also shown in Figure 13.

The exact solution of these problems can be worked out using the procedure in this paper,

shown as solid lines in Figures 12 and 13, in comparison with the numerical solution obtained

by the WENO scheme using N = 1000 uniform grid points, shown as circles. Again, in both

cases, we can see that the two results agree very well.
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Figure 13: The exact entropy solution obtained by the procedure in Section 3 (solid line)
and the numerical solution obtained by using WENO scheme with N = 1000 uniform grid
points (circles) at the time t=6 min for Example 2 (b-1) and (b-2), respectively.

4.3 Example 3 (Wide moving jam)

Consider a long homogeneous freeway of length 30 km. We now assume the following initial

density

ρ(x, 0) =

{
250, 15 < x < 17
ρd, otherwise

which represents the traffic condition after an incident (recurrent or non-recurrent) at x = 17.

The left-hand entrance of the highway is always kept at a density of ρd all time. We consider

three cases: (a) ρd = 50, (b) ρd = 45, and (c) ρd = 40 veh/km, with entrance (demand) flows

of 4000, 3690, and 3360 veh/h, respectively. The demand of the first two cases exceed the

capacity of Flux II (3600 veh/h), whereas the demand of the third case is below this capacity.

Figures 14-16 plot the exact entropy solution (solid line) and the numerical solution obtained

by the fifth order WENO finite difference scheme with N = 1000 uniform grid points (circles)

for all three cases. We can see that the two results agree very well.

From the figures, we can clearly see the formation of a wide moving jam with two very

sharp shock fronts on both ends of the moving jam, which is a traffic phenomenon that is

commonly observed on highways (Kerner and Rehborn, 1996), and was well studied using
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the three-phase traffic theory (Kerner, 2004), cell transmission model (Lin and Lo, 2003),

and traveling wave analysis (Jin and Zhang, 2003; Kerner and Konhauser, 1994; Zhang and

Wong, 2006; Zhang et al., 2006). In Examples 3 (a) and 3 (b), when the demand from the

left-hand highway entrance is higher than the capacity of the congested regime (Flux II in

this example), the wide moving jam lasts for more than 30 minutes, whereas in Example 3

(c) when the demand is lower than this reduced capacity, the jam dissolves very quickly. It

is interesting that the wide moving jam can also be formed using the first order LWR model,

and does not require a linear flow-density relationship in the congested regime as discussed

in Lin and Lo (2003).

We also show in Figure 17 the time-space diagrams and three-dimensional speed plots of

these three cases to illustrate the results.

5 Conclusions

In this paper we consider the explicit construction of physically relevant entropy solutions of

a class of conservation laws with discontinuous flux functions, which are piecewise quadratic

and locally concave in each piece. We treat this problem as the limit of a sequence of approx-

imate problems in which the fluxes are continuous functions but with progressively sharper

gradients. We have presented explicit formulas for such entropy solutions for both the simple

Riemann initial conditions and for piecewise linear initial conditions and piecewise constant

boundary conditions. We demonstrate these explicitly constructed entropy solutions to rep-

resentative traffic flow problems and compare them with numerical solutions obtained with

high order WENO schemes.
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Figure 14: The exact entropy solution (solid line) and the numerical solution obtained by
WENO scheme (circles) for Example 3 (a) ρd = 50. Top left: t = 5 min; top right: t = 15
min; bottom left: t = 30 min; bottom right: t = 60 min.
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Figure 15: The exact entropy solution (solid line) and the numerical solution obtained by
WENO scheme (circles) for Example 3 (b) ρd = 45. Top left: t = 5 min; top right: t = 15
min; bottom left: t = 30 min; bottom right: t = 60 min.
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Figure 16: The exact entropy solution (solid line) and the numerical solution obtained by
WENO scheme (circles) for Example 3 (c) ρd = 40. Top left: t = 5 min; top right: t = 15
min; bottom left: t = 30 min; bottom right: t = 60 min.
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Figure 17: The exact entropy solutions for Example 3. Top: case (a); middle: case (b);
bottom: case (c). Left: time-space diagram; right: 3D speed plot.
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